
18 The Delphi Magazine Issue 39

New Delphi 4
User Interface Features
by Warren Kovach

Delphi 4 adds a host of new
features to make life easier for

us programmers. Among these are
some that simplify creating and
maintaining a consistent and
modern user interface. Do you
fancy having your programs follow
in the footsteps of Office 97 and the
new Delphi 4 IDE by having
new-style menus and draggable
toolbars? Then read on...

The most notable addition to the
Delphi 4 IDE is the presence of
bitmaps on the menus. Delphi 3
had no support for menu bitmaps,
in fact it didn’t even support owner
draw menus, which would allow
you to draw bitmaps yourself. The
TMenuItem component in Delphi 4
adds support for the easy addition
of bitmaps to menus.

There are no fewer than three
ways to add bitmaps to your
menus. The first is to load a bitmap
for each menu item through its
Bitmap property. This can get a bit
tedious, however, so the compo-
nent has a second method: the abil-
ity to be linked to a TImageList.
Simply create an image list and add
bitmaps to it, then set the
TMainMenu (or TPopupMenu) Image
property to point to the image list.
Finally set the ImageIndex of each
menu item to the appropriate
number. Unfortunately, the
bitmaps are not displayed in the

menu designer, but they are visible
in the actual menu on the form at
design-time.

One of the key reasons for putt-
ing bitmaps on menus is that the
same bitmap can be used on a
toolbar button. Once the user has
seen the bitmap next to a menu
item, he or she will recognize the
same bitmap on the corresponding
toolbar button. For this to be of
most use, however, the action per-
formed by the menu item and
button must be identical. This is
where the third method of adding
bitmaps comes in.

Lights, Camera, Action...
The new TAction and TActionList
components are excellent tools for
centralizing the behaviour and
appearance of user interface ele-
ments. Each TAction corresponds
to a single command, such as open-
ing a file or copying data to the clip-
board. It has an OnExecute event,
which you would point to an event
handler that actually performs the
action. It also has several of the
standard control properties, such
as Caption, Hint, Enabled and Visi-
ble. You can link a set of actions (a
TActionList) to a TImageList, which
provides bitmaps to be associated
with each action. Figure 1 shows
the action list editor and the
properties of one TAction.

A number of the basic compo-
nents, such as TToolButton and
TMenuItem, have Action properties
that can be linked to instances of
TAction. So, if you have a file-saving
TAction called FileSaveAction you
could link it to both the File | Save
menu item and the file-saving
toolbar button. Both the menu
item and the button then take on
the caption, hint and bitmap set in
the TAction. Clicking on either will
call the same event handler.

If you need to disable certain
actions you simply set the Enabled
property of FileSaveAction to
False: both the menu item and
button will automatically follow
suit. Likewise, any changes in the
hint for FileSaveAction are
reflected in the menu item and
button. To make it easier to update
the properties of a TAction an
OnUpdate event is provided. Let’s
say you want to enable or disable
FileSaveAction depending on
whether the data has been modi-
fied. You create an OnUpdate event
handler that checks the status of
the data and sets FileSaveAction.
Enabled appropriately. Every time
your application goes into an idle
state it will call all the TAction.
OnUpdate methods to ensure the
user interface is up to date.

This centralization of behaviour
makes it easier to set up the
standard user actions and modify
them at runtime. Those of you who
have complicated UpdateMenuItems
methods that keep everything in
sync will greatly appreciate these
new components!

To create a new project using
TActionLists you should first set
up the TImageList and TActionList
components, adding entries and
bitmaps for all the appropriate
actions. You can then rapidly pop-
ulate your menus and toolbars by
just adding new items and picking
the appropriate action from the

➤ Figure 1



November 1998 The Delphi Magazine 19

Actions dropdown list on the
Object Inspector. If you later
decide to move some menu items
to another menu this can be done
rapidly by reassigning TActions to
other entries: you don’t need to
copy or retype any properties.

Note that for the images to
appear you must first make sure
that the Images property of the
main menu or the toolbar is set to
the same TImageList as used by the
action list. A side effect of a
TImageList being linked to a menu
is that Checked items will have a
sunken 3D look rather than a
simple checkmark.

Toolbars As Menus
Another new feature of the Delphi 4
IDE is the 3D menu. Each menu
item now rises up as the mouse
cursor passes over it and sinks
down when it is pressed, just like
the flat buttons on a TToolBar. After
noticing this your first thought
might be to look for a new property
of TMainMenu called 3D, but you
won’t find it. The menu is not a
standard Windows menu, but is
emulated using a TToolBar.

Delphi 4 has added support to
TToolBar and TToolButton to allow
them to act like a regular menu. By
using captions and not images on
the buttons (and setting a few
other properties, as explained
below), we too can have 3D menus.
They will behave like real menus,
too, in that the usual keyboard nav-
igation will be the same and the
drop-down menus will track the
mouse (that is, once you’ve clicked
on one top-level menu the others
will be pulled down automatically
as the cursor passes over them).

Creating a toolbar-based menu is
fairly simple, though slightly more
fiddly than a regular menu. First, if
your project does not already have
a menu you should create and pop-
ulate a TMainMenu component, just
as you normally would. You can
use links to a TActionList, as
described above, to make this task
easier. You must also set the Menu
property of the form to be blank, so
that this TMainMenu will not actually
be displayed. Instead, it will pro-
vide the menu structure for the
toolbar buttons.

Next, add a TToolBar to your
form, aligned to alTop. The Flat
and ShowCaption properties must
be set to True. You can then right
click on the tool bar and choose New
Button to add a series of buttons for
each top-level menu item. For each
button set its MenuItem property to
the appropriate top-level menu
item. For example, the first button
will be the File menu, so you link it
to File1, which is the default name
for the first top-level menu item in
most menus. The caption for that
menu item will automatically be
copied to the button.

You must set the Grouped prop-
erty of each button to True. This
allows the buttons to track the
mouse cursor just like regular
menus. You will also probably
want to set AutoSize to True so that
the buttons are just the right size
for the caption. Run your project
and you now have a 3D menu!

The process of linking the
toolbar to a main menu can also be
done at runtime by adding the
code in Listing 1 to the form’s
OnCreate event handler. This is par-
ticularly useful for adding to a main
form template, for use in creating
new applications. Just add a blank
TToolBar and TMainMenu to the tem-
plate and add this code. Then
when you create a new project
from this template all you need to
do is build the menu structure in
the TMainMenu.

Finally, a warning. The menu-like
appearance depends on having a
recent version of Microsoft’s
COMCTL32.DLL: version 4.72 or
later. This version is automatically
installed on your machine when
you install Delphi 4, but it may not
be on your customer’s machines.
Also, if you install Microsoft’s
Internet Explorer 3 it will overwrite
the DLL with an older version.
When this happens the menu but-
tons will lose their flatness, will be

the same width, and will display
the & character in the caption. A
setup program that installs the
correct version is on the Delphi 4
CD-ROM in the directory \Info\
Updates. You can also get it from
Microsoft’s website at

www. microsoft.com/msdn/
downloads/files/40comupd.htm

Roll Your Own IDE
Let’s try out the features we’ve
looked at so far. Almost everything
discussed in this article appears in
the Delphi IDE, so the best test of
the features is to create an applica-
tion that emulates the IDE. The
source code for the complete test
application is on the disk in
IDEClone.zip. To create this from
scratch we simply create a new
application with File | New Appli-
cation, then add a TMainMenu,
TActionList and TImageList, link-
ing them together and populating
them with actions and bitmaps as
described above.

We will next add a bar across the
top for the new style menu as well
as other toolbars. You may have
noticed that the sliding, moveable
toolbars in the Delphi IDE have a
somewhat different appearance
and behaviour than the usual
TCoolBar from the Win32 palette.
This is because it is created using
the new TControlBarcomponent,
which can be found on the Addi-
tional palette page. This has some
important enhancements over the
TCoolBar and, unlike TCoolBar, is
not based on the Microsoft
common control in COMCTL32.DLL.
We will add one of these to the
form, making sure that Align is set
to alTop and AutoSize to True.

Then we can add a TToolBar to
the TControlBar, aligned to alTop,
to act as the menu; we will add but-
tons and link them to the main

procedure TForm1.FormCreate(Sender: TObject);
var
i : integer;

begin
Menu := nil;
for i := pred(MainMenu1.Items.Count) downto 0 do
with TToolButton.Create(ToolBar1) do begin
MenuItem := MainMenu1.Items[i];
Grouped := True;
Parent := ToolBar1;

end;
end;

➤ Listing 1



20 The Delphi Magazine Issue 39

menu as described above. This
main form should be shown as a
bar across the top of the screen,
like the Delphi IDE. Also, we must
make sure the form is always just
large enough to contain the control
bar. To do this we create an OnShow
event handler like that in Listing 2.

Note the setting of the Con-
straints property for the form.
This is a new property in Delphi 4
that makes it much easier to set
maximum and minimum sizes of
controls and forms. Previously you
had to trap the WM_GETMINMAXINFO
message to constrain sizes. With
this set the user cannot change the
height of the form. However, the
TControlBar might need to resize
itself when the various toolbars are
moved around. If it does this, the
form must be resized too. To allow
this we must add an OnResize event
handler to the TControlBar and
insert the code in Listing 3.

This removes the constraint,
resets the form’s height to accom-
modate the new control bar size,
then resets the constraint. Now
compile and run this project and
you will see a nice 3D menu at the
top of the screen.

Floating Toolbars
Let’s add two other toolbars to
contain some buttons, one for
some File menu actions and one
with Edit commands. We will first
need to set the AutoSize property
of the control bar to False so that
we can resize it to make room for
the toolbars. Drop a couple of
toolbars on the control bar and set
their properties as follows: Flat is
True, DragKind is dkDock, DragMode is
dmAutomatic and Images points to
the form’s TImageList. You can now
add buttons by right clicking on
the toolbar, choosing New Button,
and setting the buttons Action
property to the appropriate action.
Now set the control bar’s AutoSize
and DockSite properties to True.

When you run the application
you will see the two new toolbars.
When you drag them by their
handles you can rearrange the
toolbars on the control bar. If you
drag them off the control bar they
will automatically turn into floating
toolbars, complete with enclosing

window, a caption bar and a close
button.

This behaviour is enabled by the
setting of the DragKind property to
dkDock. Docking is a new feature of
Delphi 4 that is pervasive through-
out the VCL. It allows any control
that is set to dkDock to become, at
runtime, a child control of another
that is designated a dock site. This
allows the user to rearrange con-
trols at will. Delphi 4 has a built-in
docking manager that controls
much of this behaviour automati-
cally. In the case of our toolbars
they are being dragged off their
parent control but they are not
being dropped onto another desig-
nated dock site. When this hap-
pens the docking manager creates
a new form to act as a parent to the
toolbar.

Note that we’ve set the DockSite
property of the control bar to True.
This means that the control bar
can host any dockable control that
is dropped on it. To test this just
drag one of the floating tool bars
back up to the control bar. It will be
docked back onto the control bar
again. The floating toolbar
window, which is not needed any
more, will disappear.

Dockable Tool Windows
In the Delphi IDE almost everything
is dockable. The toolbars can be
dragged out to form floating
toolbars, as is done in our example
project. Also, most of the other
tool windows, such as the object
inspector or project manager, can
be docked to each other. In fact, in
my opinion the tool windows are

just too ready to jump into bed
with each other at the slightest
flick of the mouse. At first I found it
a bit disconcerting, although it’s
growing on me. Fortunately it can
be turned off by right clicking on a
window and choosing the Dockable
menu item.

There are a number of ways to
create docking windows such as
these, ranging from the virtually
automatic to schemes where the
programmer has complete control
over where and how docking
occurs. The simplest method is to
create a dock site using a TPanel.

Let’s say we want to create
something that works in a similar
way to the code editing window in
the IDE. This always has a series of
TRichEdit editing controls on a
tabbed control. It also allows other
windows to be docked at either
side or at the bottom. The size of
the editing controls will be
adjusted so that they and the new
docked control can both be
accommodated within the same
window.

To demonstrate this we will add
three new forms to our IDEClone
project. Two of them will be tool
windows. For this demonstration
they can be blank forms, although
in the project on the disk I’ve made
them up to look a bit like the
Object Inspector and Project
Manager of the IDE. The important
step, though, is that the two forms
must have DragKind set to dkDock
and DragMode set to dmAutomatic.

Now create a third form that will
house the editing controls. First
we need to create a dock site. Add

procedure TIDEForm.FormShow(Sender: TObject);
begin
Left := 0;
Top := 0;
Width := Screen.Width;
Height := ControlBar1.Height + (Height - ClientHeight);
Constraints.MaxHeight := Height;

end;

➤ Listing 2

procedure TIDEForm.ControlBar1Resize(Sender: TObject);
begin
Constraints.MaxHeight := 0;
Height := ControlBar1.Height + (Height - ClientHeight);
Constraints.MaxHeight := Height;

end;

➤ Listing 3



22 The Delphi Magazine Issue 39

a TPanel and set its Align property
to alRight and DockSite to True, so
that it can accept dockable con-
trols. We only want this panel to be
visible when something is actually
docked on it, so we will set
AutoSize to True. Now add another
TPanel with Align set to alClient to
fill the rest of the window. To this
you can add a TRichEdit (or per-
haps a TPageControl with several
editors).

We want all three windows visi-
ble at program startup so, in the
FormShow method of the main form,
we will add calls to the Show
method of each window. Now
when we run the program we will
see the three tool windows as well
as the menu bar at the top. Drag
one of the dockable forms over to
the right side of the edit window.
When the cursor comes within a
few pixels of the right side (within
the ‘zone of influence’ of the
autosizing TPanel, which now has a
width of 0) the dragging rectangle
will change shape and position to
show where the form will be
docked if it is dropped. Drop it and
it will be docked into the editing
window.

If you drag and drop the second
form onto the right side of the edit-
ing window you will see the dock-
ing area being divided between the
two forms, either horizontally or
vertically. The built-in docking

automatically does this and places
a splitter bar between the two to
allow you to adjust the space
allocated to the two windows.

Taking Control
Unfortunately, this automatic
docking with a TPanel does not
allow you to adjust the relative
amount of space allocated to the
docking area and the editor. No
splitter is added automatically
between the panel and the rich edit
control. You might try adding one
at design-time. However, this will
not work reliably because the
panel is resized at runtime to
accommodate the docked control.
When this happens the splitter
remains at the right edge of the
form, not between the two areas.
Instead we must adjust the posi-
tioning of the splitter in code at
runtime.

Another problem is that the
docked control will always be the
same height or width as it was
when it was a separate window.
This means that it may take up too
much of the editing window when
docked. We will initially want to
limit it to just one third of the
window size; the user can adjust
this later.

The docking support adds a
number of new events that allow
you to take more control of the
docking process. There are two,
OnDockOver and OnDockDrop, that will
help us add the splitter, as well as

customize the action a bit more.
To test these we will add two new
panels, one aligned to the left and
one aligned to the bottom (you
must first set the Align property of
the panel containing the rich edit
control to alNone and resize it to
give a bit of room for working). We
will set their DockSiteproperties to
True but leave the AutoSize proper-
ties set to False. We will also set
the width of the one at the left and
the height of the bottom one to 0.
Next add two TSplitters, one
aligned to the left and one to the
bottom, and set their Visible
attributes to False.

We next add the event handlers.
OnDockOver will be fired when a
dockable control is over a dock
site. We can use this to adjust the
docking rectangle shown when the
form is over the dock site. The
LeftDockPanelDockOver and Bottom-
DockPanelDockOver methods in List-
ing 4 show how to do this for
panels at the bottom and left.

OnDockDrop is called when the
control is actually dropped onto
the dock site. It is here that we do
the adjustments to the panel and
splitter. The first statement of the
DockPanelDockDrop method checks
if this is the first control to be
dropped on this panel; the docking
manager will take care of adding
splitters between two or more con-
trols. If it is first then the
ShowDockPanel method is called.
This is used for hiding the panel

procedure TEditWin.ShowDockPanel(
APanel: TPanel; MakeVisible: Boolean);

begin
if APanel = LeftDockPanel then
LeftSplitter.Visible := MakeVisible

else
BottomSplitter.Visible := MakeVisible;

if MakeVisible then
if APanel = LeftDockPanel then begin
APanel.Width := ClientWidth div 3;
LeftSplitter.Left := APanel.Width+LeftSplitter.Width;

end else begin
APanel.Height := ClientHeight div 3;
BottomSplitter.Top := ClientHeight - APanel.Height -
BottomSplitter.Width;

end
else
if APanel = LeftDockPanel then
APanel.Width := 0

else
APanel.Height := 0;

end;
procedure TEditWin.DockPanelDockDrop(Sender: TObject;
Source: TDragDockObject; X, Y: Integer);

begin
if (Sender as TPanel).DockClientCount = 1 then
ShowDockPanel(Sender as TPanel, True);

(Sender as TPanel).DockManager.ResetBounds(True);
end;
procedure TEditWin.DockPanelUnDock(Sender: TObject; Client:
TControl; NewTarget: TWinControl; var Allow: Boolean);

begin

if (Sender as TPanel).DockClientCount = 1 then
ShowDockPanel(Sender as TPanel, False);

end;
procedure TEditWin.LeftDockPanelDockOver(Sender: TObject;
Source: TDragDockObject; X, Y: Integer; State: TDragState;
var Accept: Boolean);

var ARect : TRect;
begin
ARect.TopLeft := LeftDockPanel.ClientToScreen(Point(0,0));
ARect.BottomRight := LeftDockPanel.ClientToScreen(
Point(Self.ClientWidth div 3, LeftDockPanel.Height));

Source.DockRect := ARect;
end;
procedure TEditWin.BottomDockPanelDockOver(Sender: TObject;
Source: TDragDockObject; X, Y: Integer; State: TDragState;
var Accept: Boolean);

var ARect : TRect;
begin
ARect.TopLeft := BottomDockPanel.ClientToScreen(
Point(0, - Self.ClientHeight div 3));

ARect.BottomRight := BottomDockPanel.ClientToScreen(
Point(BottomDockPanel.Width, BottomDockPanel.Height));

Source.DockRect := ARect;
end;
procedure TEditWin.DockPanelGetSiteInfo(Sender: TObject;
DockClient: TControl; var InfluenceRect: TRect;
MousePos: TPoint; var CanDock: Boolean);

begin
CanDock := DockClient is TForm;

end;

➤ Listing 4



24 The Delphi Magazine Issue 39

and splitter when the control is
undocked as well as showing them
when they are docked, so we pass a
boolean MakeVisible parameter
along with the dock site object.
Within the method we first check
which panel is receiving the con-
trol and make the appropriate
splitter visible. Next, if we are
docking, we resize the panel so
that it takes up one third of the
editing window and position the
splitter between the panel and the
editor. After the call to ShowDock-
Panel we force a repaint of the
docked control by calling the
ResetBounds method of the dock
site’s docking manager.

Undocking of the control is han-
dled through the DockPanelUndock
handler for the OnUndock event.
Here we simply check to see if this
is the last control being undocked
from the panel, then call ShowDock-
Panel to hide the panel and splitter.

You may wish to only dock cer-
tain types of docking controls onto
a site. For example, the IDE will not
allow toolbars to be docked onto
other windows: they remain
floating toolbars no matter where
they are. We can do the same using
the OnGetSiteInfo event. This is
fired just before OnDockOver. Within
a handler for this event (Dock-
PanelGetSiteInfo in Listing 4) we
can check the DockClient parame-
ter to see if the dockable control is
one we want (a TFormdescendant in
this case). If it is we set the CanDock
parameter to True and docking will
continue. If not we set it to False
and the panel will act as if it is not a
dock site; no docking preview rect-
angle will be drawn and OnDockOver
will not be invoked.

Combining Tool Windows
What we’ve done so far emulates
what happens in the Delphi IDE
when you drag a tool window onto
the main editing window. However,
you can also combine two or more
tool windows into a single window,
either as tiled windows or as sepa-
rate pages on a tabbed control.
Doing this in our own programs is
more difficult. We must take over
control of docking at an even lower
level, pre-empting the default
docking manager. We can then

examine the position of the
window to determine which type of
docking is required (tiled or
tabbed), create a new form of the
required type to accommodate
both tool windows, then dock
them together.

Delphi 4 comes with a demo pro-
ject (Demos\Docking\dockex.dpr)
that shows how to do this kind of
docking. To add this functionality
to our own program we can just
copy three of the forms in that pro-
ject (the .PAS and .DFM files for
DockForm, TabHost and ConjoinHost)
to our own project and make three
changes to Dockform.PAS. First,
copy the VisibleDockClientCount
function from the docking exam-
ple’s MAIN.PAS file to this unit.
Second, search for ShowDockPanel
and change the qualifying form to
be our editing window EditWin.
Lastly, change Main in the second
Uses clause to Editor, the name of
the editing window’s unit. Next we
modify our tool windows’ declara-
tions so they are descended from
TDockingForm rather than TForm.
Run the project and you will now
be able to dock the two tool win-
dows together, just as in the IDE.

Let’s look at how this docking
works. The key to it is that we
capture the CM_DockClientmessage
sent by Delphi when docking is
about to occur. This is normally
captured by the TWinControl.CM-
DockClient method but we will
replace this with our own method.
Within this method we check the
position of the mouse, using the
TDockableForm.ComputeDockingRect
method, to determine whether to
dock the windows tiled or as
tabbed pages.

If the mouse is in the middle of
the form then we assume the user
wants to dock the forms as tabbed
pages. We then create an instance
of TTabDockHost. This is a simple
form with a TPageControl set up as a
dock site. The control’s DockSite
property is True and it has
OnGetSiteInfo and OnDockOver
event handlers that ensure only
TDockableForms can be docked.
Once this is created we dock both
the tool windows to this page con-
trol by calling the ManualDock
method for each.

If the mouse is closer to one of
the form’s sides then we will tile
the windows. In this case we create
an instance of TConjoinHost, a
blank form with no controls and
with its own DockSite set to True.
We will dock one of the tool
windows to this, then dock the
second one to the appropriate side
by passing the DockType value (a
TAlign returned by Compute-
DockingRect) to ManualDock.

If this isn’t enough control over
the docking process for you then
you can go to an even lower level
and completely replace the default
docking manager with one of your
own design. You can then use the
DockManager property of your con-
trols and forms to point to your
own docking manager. This
approach is not for the faint
hearted, though. Have a look in the
VCL source code module CON-
TROLS.PAS and study the TDockTree
and TDockZone classes to see what
is involved.

Other New Goodies
There are several other new com-
ponents and properties that
enhance the user interface design
capabilities of Delphi. Two new
Windows common controls are
encapsulated in the VCL.
TMonthCalendar displays a monthly
calendar and allows the user to
select a date or a range of dates.
TPageScroller lets you place a
large control into a small space. It
can contain another TWinControl
descendant. If the space provided
by the page scroller is too small to
display the whole control then
scroll buttons appear allowing you
to scroll back and forth (or up and
down) along the control. Windows
98 and Internet Explorer 4 use this
common control to fit long menus
into a limited space.

TPageControls and TTabControls
can now have bitmaps on their
tabs, implemented through the
Images properties link to a
TImageList. They also have a
RaggedRight property that lets you
determine, when there is more
than one row of tabs, whether they
should be spaced out along the top
of the entire control or remain at
their normal widths. A new Style



November 1998 The Delphi Magazine 25

property lets you have the tabs displayed as flat or
raised buttons instead.

TTrackBar adds more customization features
through the SliderVisible and ThumbWidth properties.
TProgressBar adds Smooth, to produce a solid bar rather
than a segmented one, and an Orientation property.
TListView now has a FlatScrollBars property and
TTreeView a AutoExpand property.

Finally, a few new properties occur throughout the
VCL hierarchy. All TWinControl descendants now
recognise the mouse wheel messages from Windows
and fires events that the programmer can trap and pro-
cess. They all also have BevelEdge, BevelWidth and
BorderWidth properties to customize the edges and
borders of the controls. Support is also added for
Middle Eastern languages that are read from right to
left. The BiDiMode property enables typing of text from
right to left when the appropriate input locales are
used. The FlipChildren method and Edit | Flip
Children IDE menu option swaps the positioning of con-
trols around the vertical axis so that they can be fol-
lowed by the user in a right to left fashion, matching the
flow of reading.

Warren Kovach has been an Action Man since Delphi
4 was released. He also writes and sells statistical soft-
ware and is the author of Delphi 3 – User Interface
Design, published by Prentice Hall. You can email him
at wlk@kovcomp.co.uk or visit www.kovcomp.co.uk


	Lights, Camera, Action...
	Toolbars As Menus
	Roll Your Own IDE
	Floating Toolbars
	Dockable Tool Windows
	Taking Control
	Combining Tool Windows
	Other New Goodies

